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Abstract. The influence of non magnetic impurities in the 2d XY model is investigated through Monte
Carlo (MC) simulations. The general picture of the transition is fully understood from the Harris criterion
which predicts that the universality class is unchanged, and the Berezinskii-Kosterlitz-Thouless description
of the topological transition remains valid. We nevertheless address here the question about the influence
of dilution on the quasi-long-range order at low temperatures. In particular, we study the asymptotic of the
pair correlation function and report the MC estimates for the critical exponent η at different dilutions. In
the weak dilution region, our MC calculations are further supported by simple spin-wave-like calculations.

PACS. 05.50.+q Lattice theory and statistics (Ising, Potts, etc.) – 64.60.Fr Equilibrium properties near
critical points, critical exponents – 75.10.Hk Classical spin models

1 Introduction

From general scaling arguments, the Harris criterion pre-
dicts that Gaussian disorder (coupled to the energy den-
sity) is an irrelevant perturbation at the fixed point of any
pure system when the exponent α which governs the sin-
gular behaviour of the specific heat of the pure model in
the vicinity of the critical point is negative [1]. The critical
behaviour of the random system is thus governed by the
pure fixed point and the universality class of the model
remains unchanged.

From this point of view, the 2d XY model is probably
the one where the influence of quenched disorder is essen-
tially trivial, and nothing special is expected, since it dis-
plays a critical behaviour described by essential singulari-
ties. On the other hand, the transition of the 2d XY model
is not conventional and has very interesting features which
make the question of the influence of disorder worth study-
ing. Indeed, the transition, first described by Berezin-
skii [2] and Kosterlitz and Thouless [3,4], is governed by
the condensation of topological defects. The symmetry of
the XY model being continuous, there is no spontaneous
order in the system (in 2d) at any non zero tempera-
ture according to Mermin Wagner theorem [5,6]. Never-
theless at very low temperatures, the spin-wave approxi-
mation which assumes that the disorientation θr − θr+µ
between neighbouring spins (µ denotes the unit lattice
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spacing) remains small, captures the essential features of
the behaviour of the system, leading to an algebraic decay
of the correlation function [7]

〈
σ(r) · σ(r + R)

〉 ∼ |R|−η(T ), (1)

(where σ(r) are two-component unit vectors), and, as a
consequence, to the absence of magnetization and to an
infinite susceptibility. The correlation function exponent,
η(T ), continuously increases with temperature. The model
is said to have a low temperature phase with quasi-long-
range order. At high temperatures on the other hand, a
high temperature series expansion leads to a more con-
ventional exponential decay of the correlation function.
It is clear from these two extreme behaviours that some-
thing must happen in between and that the model un-
dergoes a transition in the intermediate regime. The sce-
nario proposed by Kosterlitz and Thouless (KT) is based
on the existence of vortices, which are localized defects
where the field θr (the angle between spin σ(r) and
some arbitrary reference direction) may become singu-
lar at some points. The energy carried by such defects
increases logarithmically with the system size, and thus
they are constrained to be associated in pairs which nev-
ertheless amplify the disordering of the system, leading
to an effective increase of the temperature. The vortices
appear in increasing number in the system when the
temperature increases, and the transition temperature is
reached when the pairs break, leaving the system totally
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disordered. In the high temperature phase, the approach
to the critical point Tc, (also referred to as KT tempera-
ture, TKT), is described by essential singularities, for in-
stance, the correlation length and the susceptibility be-
have as ξ(t) ∼ exp(−bt−σ), χ(t) ∼ ξ2−η, t = |T − TKT|,
with η = 1

4 and σ = 1
2 (for reviews, see e.g. [8–12]).

From the hyperscaling relation α = 2 − νd, and from
the fact that the correlation length has an essential singu-
larity at the critical point, one deduces a non typical value
for the exponent of the specific heat, α = −∞, which im-
plies, according to the Harris criterion, that the adjunction
of thermal randomness (i.e. coupled to the energy density)
does not modify the general scenario described above. All
along the transition line, the KT universality class might
be recovered (that is an exponent η(TKT) = 1

4 for the
correlation function decay). Let us specify the case of site
dilution for example. The original Hamiltonian of the pure
2d XY model,

H0 = −J
∑
r

∑
µ

σ(r) · σ(r + µ), (2)

where σ(r) · σ(r + µ) denotes the scalar product and the
spins σ(r) are located at the lattice sites r of a square lat-
tice Λ, is modified by the introduction of a set of occupa-
tion variables cr which take the values 0 (with probability
1−p) or 1 (with probability p) depending on the fact that
site r is empty or occupied by a spin,

P [cr] =
∏
r

P (cr)

=
∏
r

[
pδ(cr − 1) + (1 − p)δ(cr)

]
. (3)

Thus the Hamiltonian of the diluted 2d XY model reads:

H = −J
∑
r

∑
µ

crcr+µ σ(r) · σ(r + µ). (4)

Altogether, one expects a phase diagram starting from the
pure system critical temperature kBTKT/J � 0.893 [13] at
p = 1, and decreasing up to a transition at zero temper-
ature at the site percolation threshold of the 2d square
lattice, pc � 0.59, since no transition at all takes place
in the system when there is no more percolating cluster
of spins. The question which remains interesting is to un-
derstand the exact role of the impurities. Of course, the
adjunction of impurities would first decrease the transition
temperature through the usual dilution effect which, at a
mean field approximation decreases the average coordina-
tion number. But in the same time, the number of vor-
tices (and thus also their disordering consequences) will
possibly decrease. Also their interactions between each
other and the interactions between vortices and impuri-
ties might play some role. This question has been partly
discussed in references [14,15] and we essentially address
here the question of the role of impurities at low tem-
perature, where the spin-wave approximation should give
reliable results.

2 Determination of the phase diagram
of the diluted model

The determination of the phase diagram is performed
using a fit of the order parameter profile inside a finite
system to the functional expression predicted by a conve-
nient conformal mapping, valid at a scale-invariant critical
point. By extension it is also valid in the whole low-
temperature phase of the XY model which displays scale-
invariant algebraic correlation functions. This method has
been applied with success to the case of the pure XY
model [16–18] and should provide here also reliable re-
sults. The order parameter vanishes in the bulk of the sys-
tem at any temperature in the XY model, unless symme-
try breaking fields are applied along some boundaries ∂Λ
for example. The magnetization profile 〈σ(r) · σ∂Λ〉 thus
obeys a general covariance law under conformal transfor-
mations. The case of a square geometry with fixed spins
along its fours edges is particularly easy to implement in
Monte Carlo simulations. There, the effect of the Schwarz-
Christoffel conformal mapping is just to define a rescaled
distance variable, called κ(w) (here and in the following, w
stands for the complex variable associated to the point r),
in terms of which one recovers inside the square with fixed
boundary conditions, a simple power law for the profile:

〈σ(w) · σ∂Λ〉 ∼ [κ(w)]−
1
2 η, (5)

with

κ(w) = Im
[
sn

2Kw

L

]
×

∣∣∣∣cn 2Kw

L
dn

2Kw

L

∣∣∣∣
−1/2

. (6)

Here, cn x, dnx and snx are the Jacobi elliptic func-
tions [19], L the linear size of the lattice Λ and K ≡ K(k)
(the complete elliptic integral of the first kind) and k are
constants related to the aspect ratio of the system. For
more details, the reader is referred to reference [18]. The
main advantage of this technique is that one lattice size is
in principle sufficient (provided it is large enough), since
the shape effects are included in the conformal mapping
and the method is not much sensitive to finite-size effects.
The effect of discretization of the lattice is only apparent
at the scale of a few lattice spacings. One more advantage
is the fact that all the information encoded in the profile
is used, since all the points w inside the square are taken
into account in the fit. The strategy to obtain the phase
diagram is summarised in the following:

i) Perform simulations on a small system (32× 32) for
several dilutions (from p = 0.50 to 1.00 every 0.05) and
several temperatures (from kBT/J = 0.05 to 1.25 every
0.05).

ii) Fit the data to equation (5) (from now on, we use
the notation m(w) for 〈σ(w)·σ∂Λ〉), compute from a least-
square fit the sum of deviation squares, χ2, per degree of
freedom (d.o.f.).

iii) Plot the chi-square per degree of freedom,
χ2/d.o.f., as a function of temperature for all dilutions. It
should keep a small value (the better the disorder statis-
tics the smaller the expected value) in the scale-invariant
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Fig. 1. Order parameter profile for several temperatures
(kBT/J = 0.1; 0.3; 0.5; 0.7 and 0.9 from top to bottom) at
a dilution p = 0.80 as a function of the rescaled variable κ(w).
The transition is below kBT/J = 0.5.

phase and then increase sharply in the paramagnetic phase
where expression (5) is no longer valid.

iv) Report on the phase diagram the temperature
where the χ2/d.o.f. starts to increase sharply, and which
is the estimate of the critical temperature at a given dilu-
tion. The results will be refined later when larger lattices
will be considered in order to investigate the universality
class at the transition.

We may also mention here a few comments about
the technical details: we use a Wolff algorithm [20] and
each sample is thermalized by 104 Wolff iterations, and
104 other sweeps are used for computation of the physical
quantities. The average over disorder realizations is per-
formed over 104 samples. One iteration takes of the order
of 1 µs of CPU time per spin on a standard processor, so
one simulation needs around 200 × L2 seconds (and here
we have 23 temperatures times 10 dilutions). For more
precise estimates to be described later, we also performed
simulations for sizes 64×64 (with 4×104 samples for dis-
order average, so one simulation takes 8000×L2 seconds)
and 128× 128 (with 2× 104 samples for disorder average,
or 4000× L2 seconds for one simulation).

In order to illustrate the above mentioned programme,
we first show in Figure 1 the behaviour of the order param-
eter profile for several temperatures at a dilution p = 0.80
as a function of the rescaled variable κ(w) on a log-log
scale. It is particularly clear that the data fit quite nicely
to a power law at low temperatures while this type of fit
completely breaks down at higher temperatures.

A 3d plot of the χ2 in the temperature-dilution plane
is then presented in Figure 2. For the sake of clarity, a
cutoff at 0.5 was introduced in order to avoid too large χ2

at high temperatures. The low temperature phase with
quasi-long-range order extends in the whole region in the
(p, T ) plane where the χ2 is close to zero, revealing that
equation (5) nicely fits the numerical data. The phase di-

 0.55
 0.6
 0.65

 0.7
 0.75

 0.8
 0.85

 0.9
 0.95

 1
 0  0.2  0.4  0.6  0.8  1  1.2  1.4

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

2χ

k  T/JB
p

Fig. 2. 3d plot of the χ2 (to get it per d.o.f., one has to divide
by L2) as a function of temperature and dilution for a system
of size 32 × 32.
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Fig. 3. Phase diagram of the 2d dilute XY model. The data
points correspond to the results obtained after fitting the order
parameter to the conformal expression. They correspond to the
temperature where the χ2 has a sudden increase. The error bars
are estimated empirically. Three different sizes are represented
and the solid line is only a guide for the eyes. The full symbols
also reported were taken from the work of Leonel et al. [15].
Dashed line shows the mean field prediction.

agram which can be deduced from these data is shown in
Figure 3 where the data from larger system sizes are also
reported, as well as previous results [15]. As expected, as
a result of the influence of dilution, the transition temper-
ature decreases from the pure system value at p = 1 and
it vanishes at the percolation threshold of site percolation
on the square lattice.

A simple standard mean field argument for dilution
in the low impurity concentration regime (p close to 1)
gives the beginning of the transition line in the vicin-
ity of the pure system. The coordination number z on
the lattice with zero impurity concentration becomes pz
when only a (small) fraction 1 − p of sites is unoccu-
pied (this is of course correct only to leading order in
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the close neighbourhood of p = 1, since the problem
under interest here is site dilution and not bond dilution)
and thus the transition temperature may be estimated by
kBTKT(p)/J = pkBTKT(p = 1)/J � 0.893p. This transi-
tion curve is shown in dashed line in Figure 3 and fits
correctly only the first point at p = 0.95.

In the vicinity of the percolation threshold, one would
expect that the transition temperature increases with
the fraction of sites belonging to the percolating cluster.
From this argument a power-law behaviour would follow,
Tc ∼ (p − pc)5/36, with the exponent of the order param-
eter in 2d percolation (see for example Refs. [21,22]). We
cannot check this behaviour in the present model where
we essentially focus on smaller dilutions (p closer to 1)
and we did not perform enough simulations close to the
percolation threshold.

3 Low temperature behaviour of the diluted
XY model

In this section, we address the question of the behaviour
of the diluted XY model at low temperatures and of the
universality class along the transition line. More precisely,
does the spin-wave description provide the correct be-
haviour at low temperatures in the presence of dilution,
and does one recover the Kosterlitz-Thouless universal-
ity class at the transition temperature between the phase
with quasi-long-range order and the paramagnetic phase?

First of all, in order to bring reliable arguments, we
have to produce more precise data at larger sizes to ap-
proach the thermodynamic limit. We performed simula-
tions for systems of sizes L = 64 and 128, but only for
a few temperatures in the vicinity of the transition (es-
timated from the previous results for the system of size
L = 32) and for three dilutions, p = 0.70, 0.80 and 0.90.
The data are shown in Figure 4. On the left we plot the
η exponent obtained from a least square fit of lnm(w)
vs ln κ(w) and on the right, we show the corresponding
χ2/d.o.f. The vertical stripe in each figure is a rough esti-
mate of the transition temperature, where η takes its KT
value 1

4 and χ2/d.o.f. is at the edge of the plateau re-
gion (which means that order parameter density profiles
are still fitted by power laws, i.e. the system is still criti-
cal). The larger the system size, the smaller the value of
T where the χ2/d.o.f. increases and the sharper the in-
crease (note the logarithmic scale on the vertical axis). We
also notice that the absolute value of the χ2/d.o.f. in the
quasi-long-range ordered phase is meaningless, since it is
strongly dependent on the number of disorder realisations.
Here the smaller value is obtained for L = 64 where 40000
samples were produced while only 20000 were realized at
L = 128. The horizontal scale has been chosen identical
for all three figures, since it facilitates the comparison and
makes obvious the role of dilution.

Let us now discuss the low temperature limit. There,
a spin-wave calculation (given in the appendix), based on
the assumption that the spin disorientation remains small
and allows to expand the cos in the definition of the Hamil-
tonian, shows that the correlation function exponent is

Table 1. Comparison between the Monte Carlo results and
the spin-wave approximation for the 2d dilute XY model. The
numerical data were obtained by fitting the density profile in-
side a square of size L = 128. For comparison, the results of
the spin-wave approximation of the corresponding pure system
are also presented.

p kBT/J ηMC ηdiluted
SW ηpure

SW

0.96 0.04 0.007(2) 0.0069 0.0064

−− 0.08 0.016(2) 0.0138 0.0127

−− 0.12 0.024(2) 0.0208 0.0191

−− 0.16 0.032(2) 0.0277 0.0255

0.92 0.04 0.009(2) 0.0076 0.0064

−− 0.08 0.018(2) 0.0152 0.0127

−− 0.12 0.027(2) 0.0227 0.0191

−− 0.16 0.036(2) 0.0303 0.0255

0.88 0.04 0.010(2) 0.0084 0.0064

−− 0.08 0.021(2) 0.0168 0.0127

−− 0.12 0.032(2) 0.0251 0.0191

−− 0.16 0.043(2) 0.0355 0.0255

simply modified by a “rescaling” of temperature due to
the presence of the impurities. While the pure model ex-
ponent in the spin-wave approximation is given by

ηpure
SW =

kBT

2πJ
, (7)

we get in the case of the disordered system

ηdiluted
SW =

kBT

2πJ(1 − 2(1 − p))
. (8)

Within the spin-wave approximation, the η-exponent still
varies linearly with temperature at low temperatures, but
as expected, it increases faster in the disordered model.
The role of impurities is simply described by an augmented
effective temperature. We also note that the value of the
coefficient, kB/2πJ(1 − 2(1 − p)), is not simply obtained
from a replacement of the nearest-neighbour coupling J
by its average pJ in the low dilution limit.

A comparison with numerical results (in Tab. 1) de-
duced from Monte Carlo simulations shows that the spin-
wave approximation fits correctly the numerical results at
very low temperature and low empty sites concentration.
It is worth noticing that the numerical data were obtained
on a finite system, and that increasing the system size still
decreases slightly the resulting exponent (see Fig. 4).

4 Conclusions

We have performed an extensive Monte Carlo study of the
critical behaviour in the quasi-long-range ordered phase
of the two-dimensional diluted XY model. According to
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Fig. 4. Plot of the exponent η as a function of the temperature (left) for three different dilutions. The figures on the right give
the χ2/d.o.f. corresponding to the fit of the order parameter profiles. The vertical stripe materialises the transition temperature
where the χ2/d.o.f. suddenly increases (logarithmic scale).

the Harris criterion, one expects weak disorder to be ir-
relevant at the Kosterlitz-Thouless transition where the
pure model exhibits essential singularities. The numerical
results confirm this picture, since at the transition tem-
perature, we observe from Figure 4 that the η exponent is
compatible with the constant value 1

4 .
We also obtained the approximate spin-wave solution

which describes the properties of the diluted model at very
low temperatures. The presence of non magnetic impu-
rities produces an effective increase of the temperature,

but does not completely suppress the transition before
the percolation threshold is reached, as it was suspected
in reference [15] where a zero-temperature transition was
reported at p � 0.70. The argument reported in refer-
ence [15] was that impurities, when located in the vicinity
of a pair, produce a repulsive interaction between vortices
which facilitates pair unbinding. This scenario, together
with dilution effect, enhances the disordering of the sys-
tem but is not sufficient to prevent quasi-long-range or-
dering at impurity concentrations above the percolation
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Fig. 5. Typical configuration for a system of size 32 × 32,
p = 0.70 at low temperature kBT/J = 0.05.

threshold. As an example, a typical configuration at low
temperature is shown in Figure 5 for a system of size
32 × 32 at p = 0.70.

In conclusion, one should stress that the behaviour of
the model in the low temperature critical phase is in full
agreement with what might be expected from general rel-
evance arguments.
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Appendix: spin-wave calculation
at low temperature

In this appendix, we present the result of a spin-wave
calculation valid in the low temperature limit. First, we
rewrite the Hamiltonian (4) of the diluted 2d XY model
for the case of arbitrary short-range ferromagnetic inter-
action potential J(|r|):

H = −1
2

∑
r�=r′

J(|r − r′|) cos(θr − θr′)crcr′ . (9)

Here, cos(θr − θr′) stands for a scalar product of two-
component unit vectors σ(r) directed by angles θr, θr′ (cf.
Eq. (2)). Expanding cos(θr−θr′) in (9) for small difference

in directions of spins one gets the Hamiltonian (9) in the
spin-wave approximation:

H � H ′ +
1
4

∑
r�=r′

J(|r − r′|)(θr − θr′)2crcr′

≡ H ′ + H1. (10)

The term H ′ in the Hamiltonian (10) will be further ab-
sorbed into the energy reference point, whereas to rewrite
the remaining part H1 we pass to the Fourier-transformed
angle variables and the interaction potential. Taking the
periodic boundary conditions we define the Fourier-trans-
formed quantities as:

θr =
1√
N

∑
k

eik·rθk, θk =
1√
N

∑
r

e−ik·rθr. (11)

J(r) =
1
N

∑
k

eik·rν(k), ν(k) =
∑
r

e−ik·rJ(r). (12)

In (11), (12)
∑

r spans N sites of the lattice whereas
∑

k
is within the first Brillouin zone. Written in the Fourier-
transformed variables the Hamiltonian H1 reads:

H1 =
1
2

∑
q,k1,k2

S(q + k1 + k2)S(−q)ν(q)θk1θk2

−1
2

∑
q,k1,k2

S(q + k1)S(k2 − q)ν(q)θk1θk2 , (13)

with
S(q) =

1
N

∑
r

eiq·rcr. (14)

Let us single out in (13) the Hamiltonian of the pure
2d XY model. To this end let us introduce variables ρ(q)
which may serve to show deviation of S(q) from the Kro-
neker’s delta δ(q):

S(q) = δ(q) − ρ(q), (15)

with
ρ(q) =

1
N

∑
r

eiq·r(1 − cr). (16)

Denoting a configurational average with the distribu-
tion function (3) by (....) we get for the two first moments
of the random variable cr: cr =

∑
cr=0,1 P (cr)cr = p

and crcr′ = p2 for r �= r′, or p for r = r′. Here, we
remember that p is the concentration of the occupied
sites cr = 1 and that P [cr] =

∏
r P (cr). This leads to

the following values for the first two moments of ρ(q)
(note, that due to (9) r �= r′): ρ(q) = (1 − p) δ(q) and
ρ(q)ρ(q′) = (1 − p)2 δ(q)δ(q′). Considering the concen-
tration of empty sites (1− p) to be small we take it as an
expansion parameter and further we keep only linear in
ρ(q) contributions. For the Hamiltonian (9) we get:

H = H0 − 1
2

∑
k1,k2

[
ν(k1 + k2) + ν(0) − ν(k1)

−ν(k2)
]
ρ(k1 + k2)θk1θk2 + O(ρ2) (17)
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where H0 stands for the Hamiltonian of the undiluted
system:

H0 =
1
2

∑
k

[
ν(0) − ν(k)

]
θkθ−k. (18)

For the nearest neighbour interaction and square lattice
with a lattice constant a = |µ| we have J(r) = J for
|r| = a and 0 for |r| �= a,

ν(k) = 2J(cos(kxa)+cos(kya)) � 4J−J |k|2a2+. . . (19)

Subsequently, the Hamiltonian (17) reads:

H � 1
2

∑
k

J |k|2a2θkθ−k

+
∑
k1,k2

Ja2(k1 · k2)ρ(k1 + k2)θk1θk2 , (20)

with a scalar product k1 · k2.
For a given configuration of disorder, the configuratio-

nally-dependent partition function Zconf is defined by:

Zconf = Spθe
−βH , (21)

where Spθ means integration over spin degrees of freedom
on each site (and β = (kBT )−1):

Spθ(. . . ) =
∏
r

∫ π

−π

dθr

2π
(. . . ). (22)

For a given configuration of occupied and empty sites, let
us define a thermodynamic averaging by:

〈(. . . )〉 =
1

Zconf
Spθe

−βH(. . . ). (23)

Considering the quenched dilution (i.e. the case when
magnetic and non-magnetic sites are fixed on their places)
one gets the observables by averaging thermodynamically
averaged quantities with respect to different configura-
tions of disorder [23]. Now, the pair correlation function
is defined as

G2(|r2 − r1|) = 〈cr2cr1 cos(θr2 − θr1)〉

� 1
Zconf

Spθe
−βHcr2cr1

(
1 − 1

2
(θr2 − θr1)2

)
. (24)

As far as we keep only linear in ρ(q) terms, we may de-
couple configurational averaging in (24) and write the pair
correlation function as:

G2(|r2 − r1|) �
Spθe

−βHcr2cr1

(
1 − (θr2 − θr1)

2/2
)

Spθe
−βH

.

(25)

For the configurationally averaged value of the
Hamiltonian H one gets:

H =
1
2

∑
k

J |k|2a2θkθ−k+
∑
k1,k2

Ja2k1 · k2ρ(k1 + k2)θk1θk2

=
1
2

∑
k

J |k|2a2θkθ−k

+
∑
k1,k2

Ja2k1.k2δ(k1 + k2)(1 − p)θk1θk2

=
1
2
[1 − 2(1 − p)]

∑
k

J |k|2a2θkθ−k

= [1 − 2(1 − p)]H0. (26)

Then the formula for the pair correlation function (25)
reads:

G2(|r2 − r1|) = const.

×Spθe
−β′H0

(
1 − (θr2 − θr1)

2/2
)
/Spθe

−β′H0 , (27)

with

const. = 1 − 2(1 − p), (28)

β′ = [1 − 2(1 − p)]β. (29)

Formula (27) for the pair correlation function of the
diluted 2d XY model has the form of the spin-wave ap-
proximated pair correlation function of the pure system. It
differs only by a constant (28) which renormalizes also the
temperature β (29). Taking that in the spin-wave approx-
imation the pair correlation function critical exponent for
the pure system equals [7]:

ηpure
SW =

1
2πJβ

(30)

one gets the exponent for the diluted system substituting
in (30) temperature β by β′ (29):

ηdiluted
SW =

1
2πJβ(1 − 2(1 − p))

. (31)
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